Investigations into Socket 939 Athlon 64 Overclocking
by Jarred Walton on October 3, 2005 4:35 PM EST- Posted in
- CPUs
Case and CPU Cooling
For the case, things are a bit more straightforward. The cheapest cases can still work fine for any system, though they're usually more difficult within which to work, may have sharp edges, may be noisy, and could even warp or bend. As with power supplies, you get what you pay for. We'd suggest getting a case that has at least two 120mm fan locations, one in the front of the case and one in the rear. If you use 80mm fans, you pretty much need two 80mm models to equal the flow rate of a 120mm model. Blow holes on the top, bottom and side of the case can be added if you really want, though the effectiveness varies. What you really want is to get a nice flow of air going through the case without a lot of turbulence. A single 120mm fan at the front of the case acting as an intake with a second 120mm fan at the rear blowing out is generally adequate, once you add in the PSU fan, which would also be blowing out. Going beyond that to get more air flow is possible, but you get diminishing returns and increased noise. We've seen cases with seven fans all blowing in different directions that couldn't overclock at all, so more is definitely not always better.
We used an (old) Antec SX635BII for our testing, equipped with three 80mm fans. A case with two 120mm fans like the Antec SLK3700-BQE would be a bit quieter, though we didn't focus on noise levels as part of the setup. Antec cases can be really heavy, as they're built of thick steel, but they're also easy to work within. If you plan on moving your PC around a lot or putting it on top of your desk, we'd definitely recommend getting a lighter case - perhaps a SFF might be an option, if you can afford the luxury. I've picked up the massive Thermaltake Armor with a full system installed, and it was still noticeably lighter than either the Antec SX635BII or the SLK3700-BQE. (I can't comment on which is easier to work with, as the Armor system was assembled by someone else.)
Lastly, you need a decent cooler for the CPU. The stock AMD cooler will get the job done for basic overclocking, but if you want to get above 2.3 or 2.4 GHz, you'll need better. There are many options out there right now, but unlike other components, a more expensive cooler may not actually be better. Solid copper designs cost more and should cool a bit better (due to their lower specific heat and increased mass), but there's no guarantee. For overall cooling quality at a reasonable cost, we'd go with either a Zalman CNPS7000B (either the AlCu or Cu version is fine) or else get a Thermalright XP-90 with a Panaflo 92mm M1A fan. With shipping, either option should run $33 to $45, give or take. The Zalman is probably a bit quieter and it comes with a fan speed control while the Thermalright is much easier to mount onto the CPU in our opinion.
We used the aluminum version of the Thermalright XP-90, as the copper model costs about $15 more and doesn't really improve the cooling performance much. If you have another favorite HSF, you can get that instead. During our testing - even with an X2 overclocked to 2.7 GHz - the heat sink never even became very warm to the touch. As an added bonus, on the particular motherboard that we're using, the HSF overhangs the two RAM slots that we populated, so the RAM should also get more air movement than in other designs. Sure, it makes installing and removing RAM a bit trickier, but it wasn't difficult at all.
For the case, things are a bit more straightforward. The cheapest cases can still work fine for any system, though they're usually more difficult within which to work, may have sharp edges, may be noisy, and could even warp or bend. As with power supplies, you get what you pay for. We'd suggest getting a case that has at least two 120mm fan locations, one in the front of the case and one in the rear. If you use 80mm fans, you pretty much need two 80mm models to equal the flow rate of a 120mm model. Blow holes on the top, bottom and side of the case can be added if you really want, though the effectiveness varies. What you really want is to get a nice flow of air going through the case without a lot of turbulence. A single 120mm fan at the front of the case acting as an intake with a second 120mm fan at the rear blowing out is generally adequate, once you add in the PSU fan, which would also be blowing out. Going beyond that to get more air flow is possible, but you get diminishing returns and increased noise. We've seen cases with seven fans all blowing in different directions that couldn't overclock at all, so more is definitely not always better.
We used an (old) Antec SX635BII for our testing, equipped with three 80mm fans. A case with two 120mm fans like the Antec SLK3700-BQE would be a bit quieter, though we didn't focus on noise levels as part of the setup. Antec cases can be really heavy, as they're built of thick steel, but they're also easy to work within. If you plan on moving your PC around a lot or putting it on top of your desk, we'd definitely recommend getting a lighter case - perhaps a SFF might be an option, if you can afford the luxury. I've picked up the massive Thermaltake Armor with a full system installed, and it was still noticeably lighter than either the Antec SX635BII or the SLK3700-BQE. (I can't comment on which is easier to work with, as the Armor system was assembled by someone else.)
Lastly, you need a decent cooler for the CPU. The stock AMD cooler will get the job done for basic overclocking, but if you want to get above 2.3 or 2.4 GHz, you'll need better. There are many options out there right now, but unlike other components, a more expensive cooler may not actually be better. Solid copper designs cost more and should cool a bit better (due to their lower specific heat and increased mass), but there's no guarantee. For overall cooling quality at a reasonable cost, we'd go with either a Zalman CNPS7000B (either the AlCu or Cu version is fine) or else get a Thermalright XP-90 with a Panaflo 92mm M1A fan. With shipping, either option should run $33 to $45, give or take. The Zalman is probably a bit quieter and it comes with a fan speed control while the Thermalright is much easier to mount onto the CPU in our opinion.
Click to enlarge. |
101 Comments
View All Comments
Deathcharge - Saturday, October 15, 2005 - link
also what do you think of opteron 144 or 146? the 144 are very cheap and they OC quite well apprentlypmorcos - Thursday, October 13, 2005 - link
Before I comment, you should know that I have been overclocking for 8 years now and literally overclocked all but one of the chips you mentioned in the beginning of this very good article. The HT multiplier was new to me with my most recent DFI NF4-SLI-DR board so I found that extremely useful and plan to see if I can up my speeds...but I digress.I think it would be extremely valuable to TRY to put in words the order with which an overclocker should approach making changes to settings. In other words, which is likely to be the most limiting/critical aspect(s) and from there tweak the others to max the system out.
It would be interesting to say, for example, that you start with a "safe" power settings (which is pretty obviously the limiting factor). For example, let's say your CPU and memory are rated at 1.3 and 2.8 V respectively. Why not go straight to "safe" settings for the two and tweak from there? It seems that the most useful piece of information that is NOT provided by anandtech or anyone else for that matter is a voltage and temp graph of stability/viability for these chips. It would be simple to take 3 samples (at a cost) of each chip and run the test with "average" cooling and find out what is "safe". For example if running all stock settings but upping voltages to say 2.4/3.6 V in the example above, you might see stability up to 1.65 / 3.1 V with the parts catching fire at say 1.8/3.3 V or stable at temp readings for cpu/memory of 44/47C but unstable above that. Once armed with these two graphs of information averaged from 3 chips tested the rest is very straight forward.
You simply set the cpu volts to 1.65 and memory to 3.1 V (the safe settings; check real voltages vis bios monitoring) and now you up your fsb and tweak your memory timings and in a few minutes you are running max.
Why do I think this is more valuable that showing us a graph of your results? Because like many I'm squeemish about upping the voltage on my processor and memory. I'm worried much more about the power-on affects than I am the "long-term" effects.
In computers, there are no long-terms for an overclocker. An overclocker's comp is 60% hardware and 40% software. Their greatest joy is in posting results on their favorite forum. I want to know that when I hit the power button...that the 1.7V setting does NOT have a 10% chance of blowing my processor.
My ramblings. Thanks again for another great article from by far the VERY BEST place in the world to find out how computer parts work.
JarredWalton - Thursday, October 13, 2005 - link
Thanks pmorcos.I'm working on the X2 3800+ OC followup, and I've gone back and done further testing of temperatures and voltages. Chips differ, so the real advice I have on that subject is to test your own chip extensively. I've heard of people doing 2.8 GHz on 1.500V with the Venice chips, but mine won't even POST at those settings. I think 1.65 or 1.70V was required to POST, and even then I couldn't run stable benchmarks without more voltage.
I will also be trying to cover a bit more of the "how to" process in the next one. Consider this the foundation, and the next article will refine the approach a bit. Your comments on what you'd like to see more of are definitely welcome, though, and I'll try to address the order and approach I take next.
Concerning another comment: "I want to know that when I hit the power button...that the 1.7V setting does NOT have a 10% chance of blowing my processor." I'm not quite sure I understand the concern or know how to test that. Are you saying that the power on process has more voltage fluctuations and may therefore toast the CPU in the first second? (I haven't had that happen over the past several months of testing this chip and others in overclocked setups.) I must admit that I'm extremely nervous about the 1.850V I used for running at 2.80 GHz, but even then the chip continued to function (for now - heheh).
Cheers!
Jarred Walton
WhipperSnapper - Thursday, October 13, 2005 - link
That was one of the best computer enthusiast website articles that I've read in a long time, but perhaps I don't get around too much. I'd like to hear more about the problems that spilled over to other components, such as the SATA hard drive (mentioned in the Final Thoughts) and whether or not the overclocking can be isolated to the CPU and RAM. I also wondered if there was a reason why you guys used a SATA hard drive and not an IDE drive and whether overclocking requires a SATA hard drive. (I don't see why it would.)
Also, have you guys tried to do any tests using memory stick heatsinks? Do they actually do anything? That subject might make for a worthwhile article on its own--RAM cooling.
aptinio - Saturday, October 8, 2005 - link
bravo! great article. very informative but not too bloated. can't wait to finally upgrade my amd k6-II with 1mb l3 cache on the motherboard! lol!Kougar7 - Thursday, October 6, 2005 - link
Thank you for the excellent, comprehensive, and very thorough article! :-) It must have taken a massive amount of work and time to complete. It’s answered my recent musings about my own Crucial value ram, which looks much nicer now! It’s also solved a question about OCing with recent AMD 64 chips, amongst also correcting a few personal misconceptions I’ve had.I just wish to ask if you plan to include a similar article on OCing with P4s? I personally run a 2.8C (Northwood) @ 3.4 rock solid at the 3.4C’s default voltage, but am now wondering exactly what performance hits, if any, that I’ve taken from having to use a 5:4 CPU:DRAM ratio instead of the previous 1:1, even though I’ve kept it at DDR390 and the timings better than specs.
I’m planning to bench the differences from a 1:1 ratio, a 3:2 ratio at highest speed I can get (sub-DDR333), my current setup, and finally one other setting where I got the value memory to run 2-2-2-6 timings, to get a more solid idea on which performs best with some solid figures.
Although the core and the platform itself both have both changed, I’d still be interested in a Intel processor based test! Perhaps instead of a P4, maybe a Pentium “D” OCing article similar to what you have planned with the X2 3800+? ;-)
I’m very much looking forward to your X2 3800+ OCing review!! You rock :-D Thanks in advance for it!
JarredWalton - Thursday, October 6, 2005 - link
I'm trying to get a socket 775 motherboard that will overclock well with Pentium D 820. Once I get that, I can give it a go. I've also got a Pentium 4 505 and a 540 that I want to run some similar tests on. First, though, I need an appropriate motherboard.clue22 - Thursday, October 6, 2005 - link
so basically what the everybody is saying about the value RAM vs. low latency more expensive RAM is that for the athlon 64 it is basically a waste of money (i.e. you only get about 5% performance gain), but usually spend 100% or more money to get the "better" RAM. i have to build a couple of systems pretty soon and now i believe that my money would be better spent on 2GB of value RAM vs. 1GB of the more expensive stuff. does anyone know of a test that has been run with 2.5-3-3-8-1t vs. 2-2-2-5-1t? also why does every mid-range/gaming/hot-rod price guide ever recommend the either the samsung tccd (or tcc5) or winbond bh5/ch5 based memory if it has so little effect on performance. finally is it even important anymore (if it ever was) to get matched pairs of memory that are bundled together (supposedly manufactured at the same time)? i was looking at some corsair (had good experience with them in the past) xms3200xl RAM but now i think i should get more of their value select memory instead.thanks
RupertS - Wednesday, October 26, 2005 - link
so basically what the everybody is saying about the value RAM vs. low latency more expensive RAM is that for the athlon 64 it is basically a waste of moneyThis may not be a general rule.
It may just be that at this stage of development for GPU's, CPU's and memory, memory has more than enough capacity - it is not the choke point. If GPU and CPU speed were to improve while memory speed stayed the same, you might reach the point where increasing GPU and CPU speed was non-productive for games, while overclocking memory provided large performance improvements.
rabbit fighter - Wednesday, October 5, 2005 - link
Where was this explained? He said the 3200 was better in the first paragraph and that he would explain later, but I can't find the later explanation!